martes, 23 de junio de 2015

problema 5: Lanzamiento de un torpedo


Un torpedo es lanzado desde el punto A en el instante en que el barco enemigo se encuentra en el punto B y navega (el barco B) con la rapidez 50 Km/h formando un ángulo "beta" igual a 30º con la línea AB (ver figura). La  rapidez  del torpedo es 100 Km/h. ¿Bajo qué ángulo "alfa" hay que lanzarlo para que dé en el blanco?

SOLUCIÓN:

Suponiendo que el torpedo alcanza al barco en el punto C  (ver imagen derecha), las distancias BC y AC estarán dadas por:
$$BC={ v }_{ 1 }t\quad \quad ,\quad \quad AC={ v }_{ 2 }t$$ donde t es el tiempo transcurrido desde sus posiciones iniciales.

En el triángulo ABC se debe cumplir la famosa "ley de senos", es decir:
$$\frac { BC }{ \sin { \alpha  }  } =\frac { AC }{ \sin { \beta  }  } $$
$$\frac { { v }_{ 1 }t }{ \sin { \alpha  }  } =\frac { { v }_{ 2 }t }{ \sin { \beta  }  }$$
Despejando "alfa" y remplazando datos:
$$\sin { \alpha  } =\frac { { v }_{ 1 } }{ { v }_{ 2 } } \sin { \beta  } $$
$$\sin { \alpha  } =\frac { 50km/h }{ 100km/h } \sin { 30º } $$
$$\sin { \alpha  } =\frac { 1 }{ 4 }$$
$$\alpha =\arcsin { \frac { 1 }{ 4 }  }$$

Por tanto para que el torpedo de en el blanco, éste debe ser orientado con un ángulo de 14, 48º .